transactions log - definição. O que é transactions log. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é transactions log - definição

THE INVERSE FUNCTION TO A TOWER OF POWERS
Log*; Log star; Log-*; Log-star; Log *; Log* n; Iterated log

Transaction log         
HISTORY OF ACTIONS EXECUTED BY A DATABASE MANAGEMENT SYSTEM
Journal (computing); Database log; Binary log; Checkpoint record; Transaction journal; Database journal; Transaction logging; Binary logging; Log sequence number
In the field of databases in computer science, a transaction log (also transaction journal, database log, binary log or audit trail) is a history of actions executed by a database management system used to guarantee ACID properties over crashes or hardware failures. Physically, a log is a file listing changes to the database, stored in a stable storage format.
Chip log         
  • thumb
  • Chip log in the 18th century
INSTRUMENT USED TO MEASURE THE SPEED OF A SHIP AT SEA
Log (speed); Knot log; Knotted line; Patent log; Speed log; Taffrail log; Logreel; Log reel
A chip log, also called common log, ship log, or just log, is a navigation tool mariners use to estimate the speed of a vessel through water. The word knot, to mean nautical mile per hour, derives from this measurement method.
Chinking         
  • Log cabin at [[Abraham Lincoln Birthplace]]
  • Details of cabin corner joint with squared off logs
  • 1912 photo of a log cabin in Russia by color photography pioneer [[Sergey Prokudin-Gorsky]]
  • The [[Marshal's Cabin]], a hunting lodge of [[Marshal Mannerheim]] in [[Loppi]], [[Finland]]
  • Log cabin in [[Minnesota]], 1890
  • Swedesboro]], New Jersey
  • Replica log cabin at [[Valley Forge]], [[Pennsylvania]]
SIMPLE DWELLING CONSTRUCTED OF LOGS
Log Cabin; Chinking; Log cabins; Log cabin (building); Log Cabin architecture; Log-cabin
·p.pr. & ·vb.n. of Chink.

Wikipédia

Iterated logarithm

In computer science, the iterated logarithm of n {\displaystyle n} , written log*  n {\displaystyle n} (usually read "log star"), is the number of times the logarithm function must be iteratively applied before the result is less than or equal to 1 {\displaystyle 1} . The simplest formal definition is the result of this recurrence relation:

log n := { 0 if  n 1 ; 1 + log ( log n ) if  n > 1 {\displaystyle \log ^{*}n:={\begin{cases}0&{\mbox{if }}n\leq 1;\\1+\log ^{*}(\log n)&{\mbox{if }}n>1\end{cases}}}

On the positive real numbers, the continuous super-logarithm (inverse tetration) is essentially equivalent:

log n = s l o g e ( n ) {\displaystyle \log ^{*}n=\lceil \mathrm {slog} _{e}(n)\rceil }

i.e. the base b iterated logarithm is log n = y {\displaystyle \log ^{*}n=y} if n lies within the interval y 1 b < n   y b {\displaystyle ^{y-1}b<n\leq \ ^{y}b} , where y b = b b b y {\displaystyle {^{y}b}=\underbrace {b^{b^{\cdot ^{\cdot ^{b}}}}} _{y}} denotes tetration. However, on the negative real numbers, log-star is 0 {\displaystyle 0} , whereas slog e ( x ) = 1 {\displaystyle \lceil {\text{slog}}_{e}(-x)\rceil =-1} for positive x {\displaystyle x} , so the two functions differ for negative arguments.

The iterated logarithm accepts any positive real number and yields an integer. Graphically, it can be understood as the number of "zig-zags" needed in Figure 1 to reach the interval [ 0 , 1 ] {\displaystyle [0,1]} on the x-axis.

In computer science, lg* is often used to indicate the binary iterated logarithm, which iterates the binary logarithm (with base 2 {\displaystyle 2} ) instead of the natural logarithm (with base e).

Mathematically, the iterated logarithm is well-defined for any base greater than e 1 / e 1.444667 {\displaystyle e^{1/e}\approx 1.444667} , not only for base 2 {\displaystyle 2} and base e.